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Executive Summary

0.0

A wide range of algorithms have been developed over time to approach the non-trivial problem of enlarging

bitmap images, each providing a different balance between aesthetic quality (the preservation of smooth

gradients versus sharp edges) and processing efficiency. Aiming for aesthetics over speed, artificial neural

networks  have  recently  been  used  to  precisely  map  the  X  and  Y coordinates  of  an  image's  pixels  to

corresponding red, green and blue (RGB) colour channels. This time-consuming process converts a bitmap

image  into  a  complex  mathematical  function,  or  Scalable  Function  Graphic  (SFG).  SFG  files  are

significantly larger than the original bitmap, however they act as a resolution independent representation of

an image, capable of outputting colour vectors at X and Y coordinates that were not defined in the original

(low-resolution)  bitmap.  By  this  process  of  generalisation,  the  mathematically  modeled  image  can  be

rendered at any scale, with minimal impact on aesthetic quality.

The aim of this research is to build on recent SFG technology, by exploring how the efficiency of conversion

and storage can be improved (using a database of pre-trained neural networks that can be concurrently fine-

tuned), while preserving or improving aesthetic quality. 

The  project  will  require  research  and  development  in  the  areas  of  image  interpolation,  neural  network

regression and high performance computing, consisting of 60% type I (software development) and 40% type

II (investigation). It will involve significant programming and refactoring, as further development on top of

an existing project.  The development process will  be guided by continuous testing and experimentation,

gauging factors such as the suitability of learning algorithm parameters and the generality of features on

which neural networks are pre-trained.

The objectives (and final deliverables) are: 

• A broadly applicable database of pre-trained neural networks that can be retrieved by closest match

to image characteristics (providing a head start on SFG conversion).

• An improved SFG learning algorithm, growing or adding neurons during fine-tuning until sufficient

complexity has been achieved (reducing neuron redundancy and file size).

• A concurrent implementation that better utilises memory caching and precomputation.

• An implementation with previous code re-factored for readability and efficiency.

• A set of image filters to further enhance perceived aesthetic quality.

• An evaluation of this implementation.

The  evaluation  will  compare  performance  to  the  previous  SFG  conversion  software,  and  to  leading

commercial  algorithms,  in  terms of  speed,  storage efficiency, and aesthetics  as  well  as  accuracy (using

human participants and mean squared error).

0.1 Added Value
The author has an implicit understanding of the limitations of the current implementation and areas that need

improvement,  having  independently  developed  the  Scalable  Function  Graphic  format  and  conversion

software. SFGs are capable of being rendered at significantly larger scales than the original bitmap, with

output  quality  that  rivals  and  even  surpasses  industry  standards  (fractal  image  enlargement  and  spline

fitting). However, the current implementation is limited by poor performance in terms of processing speed

and file storage efficiency. This research aims to develop an updated implementation improving on these

issues.  With  complete  access  to  the  current  software,  benchmarks  can  be  run  to  compare  performance

between  the  previous  and  updated  implementation.  On  addressing  these  challenges,  it  is  hoped  that

commercial viability for SFG conversion software will be improved.

Future research and development will  likely involve a neural  network learning algorithm that  can more

accurately  approximate  sub-pixel  output  averages  (without  impeding  error  backpropagation),  to  further

improve scaled image sharpness.
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Introduction

1.0

1.1 Background & Motivations

Bitmap (or raster) images are those that are encoded as a sequence of discrete values that directly represent

colours at each of a fixed number of pixels. This is a popular format, typical of scanners and digital cameras.

[1]  It  can  store  detailed  photographic  images,  however  it  does  not  naturally  support  scaling  to  larger

dimensions without a loss of resolution (as pixels become individually perceptible). The result is a reduction

in aesthetic quality, or continuity of content, in the displayed image.[2] 

On the other  hand,  PhotoFunction  is  a  prototype piece  of  software that  converts  bitmaps into  Scalable

Function Graphics or SFGs (developed by the author). SFGs represent images as connection weights (signal

strengths) between neurons within an artificial neural network, acting as a mathematical model of image

content. Neural networks are effectively complex functions that translate inputs into corresponding outputs,

with an ability to generalise (make educated guesses) about inputs that they have never seen before.[3] In the

case of SFGs, inputs represent pixel coordinates and outputs represent colour values. As a consequence,

having converted a bitmap image into an SFG, X Y co-ordinates that were not defined in the original bitmap

(such as sub-pixel co-ordinates) can be rendered based on the co-ordinate/colour relationship encoded by the

SFG. SFGs therefore naturally support rendering at much higher resolutions than the original bitmap image,

with  minimal  impact  on  aesthetic  quality.  The  clarity  of  enlarged  SFGs  even  rivals  state-of-the-art,

commercial image scaling algorithms such as S-spline Max and fractal images.[4]

However PhotoFunction and the SFG file format suffer from significant limitations in terms of file storage

efficiency and conversion speed (taking anywhere from several hours to days depending on bitmap size and

complexity).[4] Nevertheless, online responses to the December 2014 launch of the PhotoFunction prototype

indicated potential usefulness, along with the need for further development. As mentioned by the budget

graphic design company, Titanium Alley Graphics, “there's much work to be done but PhotoFunction, still in

prototype stage of development, is producing stunning results.”[5] Referring to SFGs, one user in a Doom9

forum post remarked “I have never seen black magic this powerful”[6] while another mentioned “I've got the

original program now, but the problem is it's extremely slow.”

The  subsequent  premise  of  this  project  is  that  there  is  a  need  for  a  further  developed  PhotoFunction

implementation, to significantly improve SFG conversion speed and file size without negatively impacting

(or potentially further improving) aesthetic quality.

1.2 Aims & Objectives

The  aim  of  this  research  is  to  implement  a  series  of  improvements  to  the  current  PhotoFunction

implementation,  focused  on  reducing  conversion  times,  reducing  SFG file  size,  and  boosting  aesthetic

quality by applying known image filters. The objectives are to provide the following:

• A broadly applicable, read-only database of pre-trained neural networks that can be retrieved by

closest match to image characteristics (providing a head start on the conversion process). To ensure

efficient storage, miniature neural networks will be store in the database and fine-tuned on demand

to specific images, requiring neuron growth.

• An improved SFG learning algorithm, growing neurons in each hidden layer during fine-tuning until

sufficient complexity has been achieved (reducing neuron redundancy and SFG file size, compared

to the current one-size-fits-all neural network size).

• An adapted implementation that  runs concurrently, and takes advantage of memory caching and

precomputed lookup tables. This will ensure that the conversion process runs more efficiently, better

utilising available resources.
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• An  implementation  with  previous  code  refactored  for  readability  and  efficiency.  The  current

implementation has extremely long methods (with redundant variables and messy indentation). This

hinders inline compiler optimisations and maintainability.

• A set of known image filters to further enhance perceived aesthetic quality. Unsharp will be applied

to increase edge contrast, and noise will be explored as a means of suggesting photographic detail

when scaling by large factors. These filters are already employed by other image scaling software.

• An evaluation of this implementation in terms of speed, storage efficiency, and accuracy as well as

aesthetics (using mean squred error, in addition to a human participant sample). Benchmarks will be

run against the previous SFG implementation, and against established state-of-the-art image scaling

algorithms.

1.3 Research Areas

This  project  will  involve  research  and  development  in  several  identifiable  areas;  these  are  image

interpolation, neural network regression, and high performance computing.

1.3.1 Image Interpolation
Image interpolation technologies utilise extremely varied approaches, but all attempt to solve the problem of

increasing the spatial  resolution of an image while establishing a trade-off between speed and aesthetic

quality. Research in this area will be necessary to avoid re-invention of the wheel, and to provide insight into

how SFG conversion might be best improved. Specifically spline interpolation, resolution independent file

formats,  and  super-resolution-based  machine  learning  are  significant  areas  that  will  require  critical

examination.

The novelty of PhotoFunction and the SFG format will  therefore not  be presumed,  and will  instead be

established as part of this literature review. In the process of surveying relevant research and technologies,

this document will highlight SFG conversion issues that limit efficiency, and will explain how these will be

addressed  and  improved.  Also,  due  to  the  fact  that  a  large  amount  of  information  about  the  specific

mechanisms of PhotoFunction and the SFG file format remains unpublished, references to external sources

will not always be possible. PhotoFunction source code has therefore been uploaded to an online, password

protected repository in an attempt to mitigate this problem.  Appendix-2 provides the repository URL and

temporary  password  details,  along  with  an  overview  of  the  current  PhotoFunction  code  organisation,

explaining the functionality of each class. The information in Appendix-2 and the online repository can be

consulted by the reader in case instances arise where further clarification is needed.

1.3.2 Neural Network Regression
Neural network training (specifically regression) will feature as the most prominent area of research and

development. This is the main technology upon which the PhotoFunction implementation has been built, and

provides the largest  space for potential  improvement.  Specifically, pre-training,  data pre-processing,  and

adaptive network growth are the areas of machine learning that will be explored. Development in each of

these areas will facilitate a database of efficiently stored and broadly applicable, pre-trained networks that

can be retrieved, fine-tuned and adapted based on image characteristics.

1.3.3 High Performance Computing
As a means of significantly improving the speed of SFG conversion, high performance computing concepts

such as concurrency, memory caching and precomputation will be investigated and utilised. In particular,

designing a concurrent system for SFG conversion is likely to introduce several problems involving memory

inconsistency between threads. This could result in significant discontinuities within the mathematical model

of an SFG, causing unwanted visual artifacts. Trial and error may be involved to find an effective balance

between memory consistency (using volatile access modifiers) and runtime speed.
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1.4 Shape of Argument

1.4.1 Overview of Industry Standard Image Scaling Techniques – Chapter 2
Chapter 2 will introduce the widely used and state-of-the-art class of image scaling algorithm known as

spline Interpolation. Significant differences exist in the way that SFGs and splines express intermediate pixel

values, although both systems work by establishing a set of interpolation coefficients. This overview will

therefore feed into a discussion of differentiating factors (in Chapter 3 , relating to Runge's Phenomenon and

the nature of pixel interpretation).

Chapter  2  will  additionally  discuss  vector  graphics  and fractal  images  as  resolution  independent  image

formats. Resolution independence describes the quality of information that is encoded in a way that does not

prescribe a particular scale (as with SFGs). Establishing the benefits and limitations of these pre-existing

formats will further feed into Chapter 3, which places PhotoFunction and SFGs in context.

Finally Chapter 2 will explore significant research in the area of neural network-based image enlargement (or

super-resolution). As with interpolation,  super-resolution is  a term used in certain contexts to refer  to a

process of image enlargement,  such as where  convolution neural  networks (CNNs) are involved.  CNNs

differ fundamentally in structure and approach from SFGs, but have recently achieved industry standard (or

superior) results in terms of high-resolution image reconstruction.[7] 

As such this chapter, establishes a varied assembly of state-of-the-art image scaling techniques (S-splines,

fractals, and CNNs), and sets up a discussion of the relative advantages and limitations of the current SFG

format and conversion process (in Chapter 3). 

1.4.2 Introduction to Scalable Function Graphics – Chapter 3
Building  on  the  information  presented  in  Chapter  2,  Chapter  3  introduces  details  of  the  current

PhotoFunction/SFG  implementation,  establishing  relative  benefits  as  well  as  inherent  limitations  of

representing image information as a network of artificial neurons (compared to fractal coefficients). It also

serves to emphasise the novelty of SFGs by pulling together a discussion of spline interpolation and neural

network regression. This will essentially act as a snap-shot of PhotoFunction and SFGs as they are now

(before embarking on the summer implementation project). 

Together this information will be used to explain why SFG conversion can be very slow, and why SFG file

sizes can be very large. Yet, a visual comparison of the previously discussed image scaling approaches will

demonstrate the aesthetic quality and potential of SFGs. This chapter will therefore establish impetus for

further research and development, and act to frame an in-depth discussion (in Chapter 4) of improvements

that can be made to PhotoFunction software and the SFG format.

1.4.3 Improvements to PhotoFunction Software – Chapter 4
Chapter 4 will explain how the application of certain machine learning and high performance computing

practices can help improve SFG conversion speed and file efficiency. 

In the area of machine learning, such practices include neuron growth (adapting network sizes to image

complexity),  neural  network  pre-training  (providing  a  head  start  on  bitmap  conversion),  and  data  pre-

processing (filtering training data to better relate to neural network learning requirements). Together these

alterations will help facilitate a database of efficiently stored, broadly applicable, miniature neural networks

that can be adapted to a variety of images before subsequent fine-tuning. In particular, this will reduce SFG

file  redundancy (an  identified  weakness,  compared  to  fractal  images)  while  reducing  the  need  for  live

training (an identified weakness, compared to super-resolution CNNs). 

This machine learning discussion will be followed by an overview of high performance computing concepts

that can be employed to better optimise the neural network fine-tuning process for runtime speed. These

include parallel computing and the use of precomputed lookup tables. Problems that may be encountered

with  these  approaches  will  be  discussed,  in  addition  to  measures  that  will  be  employed in  worst  case

scenarios.
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Finally,  addressing  aesthetics  as  opposed  to  efficiency,  a  brief  overview  of  two  image  filters  will  be

presented. This section will explain how leading image enlargement software packages employ finishing-

touch image filters to further enhance image quality; specifically unsharp and noise. These will be described

as simple, worthwhile features to add to the PhotoFunction implementation.

Chapter 4 will therefore establish improvements relating to runtime performance, file storage efficiency, and

aesthetics, which will become the focus of an updated PhotoFunction implementation. This will be followed

by a short chapter that discusses further considerations pertaining to the development of this implementation.

1.4.4 Further Considerations – Chapter 5
Having identified the intentions for further development, Chapter 5 will briefly justify Java as the choice of

programming language after presenting an overview of the intended approach to evaluating this project. A

preliminary investigation of the mean squared error of SFGs will be presented, comparing against identified

state-of-the-art image scaling algorithms and revealing reasons for involving human participants in the final

evaluation process. 

Chapter 5 will be followed by a conclusion that summarises and connects the ideas that have been reviewed

in the body of this document, in addition to providing an overview of possible future work that could further

improve SFG technology. A work-plan presented at the end of the document will then show the road map for

the upcoming process of research and development, establishing staged time allocation and project specific

contingency plans.
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Overview of Industry Standard Image Scaling Techniques

2.0

As discussed in the introduction, bitmap graphics provide relatively little information that can be used to

directly guide image enlargement.  For this reason algorithms exist  that  interpolate between pixels when

bitmap graphics are required to be displayed at higher resolutions.[8]

The first  section of  this  chapter  (Spline Interpolation) will  introduce two important  algorithms that  use

splines  (piecewise  polynomials)  to  enlarge  images.  This  will  lead  directly  onto  the  section  Resolution

Independence, describing a circumstance where images are instead stored in a format that naturally supports

rendering at practically any scale. Finally, neural network-based image scaling approaches will be discussed;

specifically convolution neural networks, which have recently demonstrated an improvement on state-of-the-

art  approaches  to  super-resolution  (focused  specifically  on  error  minimisation).  Each  of  these  varied

approaches  represent  the  industry  standard  in  terms  of  photographic  image  enlargement,  while  directly

relating  to  the  mechanisms  of  PhotoFunction  (either  through  the  utilisation  of  machine  learning,  the

establishment of resolution independence, or the activity of curve fitting).

Each will act as visual and algorithmic points of comparison to SFGs later in the document (in Chapter 3 and

Chapter 5), and will set the context for an in-depth discussion of SFG functionality and weaknesses that

require further development.

2.1 Spline Interpolation

2.1.1 Bicubic Splines
One of the most frequently used, freely available image scaling approaches (set as default by most image

editing packages such as Photoshop and GIMP[9]) is bicubic spline interpolation. In this approach, sub-pixel

values are rendered based on a weighted sum or average of 16 surrounding pixel values. These are weighted

by two cubic functions, described by the equation and illustration below (Fig. 1); sourced from Digital Image

Processing, William K. Pratt[10].  F(p',q') denotes the sub-pixel value,  F(p+m, q+n)  denotes each of 16

known pixel values, Rc() denotes the cubic functions, and a and b represent distances from the nearest pixel.

Fig. 1 Bicubic interpolation[10]
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The cubic functions, Rc (together forming a bicubic function), are created by a process of spline fitting, in

which coefficients are calculated that force the spline to meet each data point while maintaining continuity.

This process requires sets of cubic equations to be solved simultaneously, such that they are equal where they

join with continuous derivatives (degrees of slope).

While  bicubic  interpolation  is  popular  and  freely  available,  a  significantly  higher  quality,  spline-based

commercial algorithm is known as S-spline interpolation, developed and utilised by PhotoZoom Pro.[11]

2.1.2 S-spline Max
The granted patent,  published in  2000,[12]  reveals  that  a  weighted pixel  system is  similarly employed.

However, in addition to taking into account distances  a  and  b, this system also takes into account a local

minimum and maximum pixel value, in addition to an “associated dynamic value” that provides a measure of

local pixel hardness (or sharp contrast). S-spline Max is the latest generation of this patented system, touted

as the industry leading algorithm for photographic image enlargement. Unlike the bicubic spline approach,

S-spline algorithms are proprietary and costly.

Image scaling techniques, such as bicubic spline and S-spline Max, are useful because of the prevalence and

limitations of bitmap graphics, which store image information in an intuitive manner. However they suffer

from the limitation of resolution dependence (overly dependent on the resolution at which the image data has

been sampled). As illustrated by the bicubic expression above, pixel values directly feature as variables in the

calculations used to establish new, interpolated pixels (resolution dependence is evident in the formula used

to model the image). 

However, resolution independent alternatives to bitmaps do exist. Resolution independence means that the

image is stored as a mathematical descriptions of features, without any reference to pixels. Instead, all pixel

data is generated when the image is displayed based solely on the mathematical description, which gives no

indication of  a  prescribed resolution or  scale.  The more sophisticated the mathematical  description,  the

greater the capacity for generating visually plausible high-resolution information.[13] Vector graphics and

fractal images are both types of resolution independent image formats[2][14] that have relative strengths and

limitations. These will be discussed in the following section.

2.2 Resolution Independence

2.2.1 Vector Graphics
Vector graphics are a popular alternative to bitmaps, where image data is encoded as mathematically defined

geometric objects. Representative ellipses, polygons, lines, and curves are stored as precise vectors, and so

the image can be rendered at any resolution, sampling pixel values from the vector graphic’s mathematically

defined geometric objects. Vector graphics typically require significantly less storage space than bitmaps, but

this comes at the expense of capturing photo-realistic detail. This format is therefore only currently useful in

cases where exact photorealism is not required.[2] 

A relatively recent vector graphic feature (of editors such as Adobe Illustrator and CorelDraw) is referred to

as a gradient mesh.[15] Instead of relying on geometric primitives, a gradient mesh represents image data as

an intricate deformed grid, allowing for a higher degree of photorealism. Each vertex specifies a gradient and

colour that are interpolated over grid cells (typically using a bicubic interpolation algorithm).[16] Gradient

mesh tools tend to require manual guidance (as a labour and time intensive task), requiring skill to produce

good results.[16] During this process a user drags and assigns colours to control points (or vertices), aligning

with a reference bitmap image and sampling colours from appropriate pixels.[17] 
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In 2007 a patent was filed (and later granted in 2014)[18] for a semi-automated approach to generating

“optimised gradient meshes”. This requires the user input to identify separate objects in the image (using a

cut-out or lasso tool) after which an energy minimsation algorithm fine-tunes mesh vertices (minimising the

residual  error between the bitmap image and the rendered gradient  mesh).[15]  Fig.  2 shows an original

bitmap image (left) that has been rendered as an optimised gradient mesh (right).  Acknowledged in the

original paper, this optimisation tool is well suited to modeling smooth objects, but it is not as well suited to

modeling details that are characterised by rapid changes in colour intensity.[15]  As can be seen in Fig. 2,

details such as eye lashes and hair have become blurred during the conversion to gradient mesh.

In  2009  a  completely  automated  approach  to  gradient  mesh  generation  was  presented  in  the  paper

“Automatic and Topology-Preserving Gradient Mesh Generation for Image Vectorization”,[16] along with a

filed patent application.[19] This approach is nevertheless still incapable of modeling photographic detail, as

acknowledged by the authors.[16]

Research that has focused on this particular problem includes Jeschke et a 2011,[20] in which textures are

created by fitting Bezier curves in addition to parameters for procedurally generated noise. Fig. 3a shows an

original bitmap image, while a version that has been vectorised using this approach is given in Fig. 3b, and

Fig.  3c shows the result  after  manual  retouching.  Photographic detail  is  still  lost  and manual  editing is

required to produce satisfactory results. Also, as described by the authors, overall texture characteristics are

mimicked instead of faithfully modeled.[20]

These  varying  approaches  to  vectorisation  are  currently  insufficient  to  produce  resolution  independent

formats  that  can  allow  accurate  scaling  of  photographic  images.  Generating  high  quality  sub-pixel

information requires precise modeling at the level of pixels.  An entirely different approach to resolution

independence  known as  fractal  image  enlargement  achieves  this,  advertised  as  an  industry  standard  in

photographic resolution independence.[21]

Fig. 2, Optimised Gradient Mesh[15]
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          Fig. 3a, original chick[20]                  Fig. 3b, vectorised chick[20]             Fig. 3c, retouched chick[20] 

2.2.2 Fractal Images
Fractals are mathematically defined patterns that exhibit self-similarity at increasingly diminishing scales,

[22] facilitating infinite zooming based on a recursive mathematical description. Their application for scaling

photographic images relies on the fact that photographs posses a degree of self-similarity that can be defined

in  term  of  affine  transforms.  These  are  transformations  that  preserve  affinity,  in  terms  of  ratios  and

collinearity between lines and points[23] (such as rotating, scaling, skewing and reflecting).  

Fig.  4  shows  a  fractal  image  that  has  been  generated  with  two  affine  transformation  functions  (using

constants obtained from the book “Fractal Geometry: Mathematical Methods, Algorithms, Applications”[24]

- the fractal image has been rendered using author's implementation). 

Fig. 4, Fractal IFS

As can be observed, Fig. 4 exhibits a pattern that repeats itself at increasingly smaller scales. The complex

structure (which has been encoded using only twelve values) can be rendered at any scale without any loss of

quality. An iterated function system (IFS) has been applied to render this fractal (as is the case with fractal

image enlargement software). Iterative functions feed their resulting values back as function input a certain

number of times, transforming the values. Previous X and Y co-ordinates are therefore fed into the iterated

function to produce new X and Y co-ordinates as outputs. RGB values can also act as iterated inputs to more

complex IFSs (necessary for photographic image enlargement).[24] But in the case of Fig. 4, an arbitrary

colour has been rendered at the X Y co-ordinates of each iteration. 

Describing a photographic bitmap as fractal coefficients is a non-trivial problem. Effectively, existing self-

similar affine transformations are identified between partitioned blocks or tiles in the image. The image can

then be encoded as the constants that describe these transformations. A special property of IFSs are the

irrelevance of initial pixel information (as initial input to the iterated functions). The output will  always

converge  over  multiple  iterations  on  an  identical  and  stable  result  (a  rendering  of  the  encoded image)

regardless of the initial input. The original bitmap information is therefore no longer relevant once the image

has been encoded by iterated affine transformations.[24]
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Described in terms of self-similar characteristics, sub-pixel values can now be rendered with respect to an

identified fractal pattern, producing high quality results in addition to requiring less information than the

original bitmap.

2.2.3 Fractals vs. Vectors for Resolution Independent Photographs

In addition to requiring less information that the original bitmap, fractal image conversion can be performed

in  a  matter  of  seconds,  while  gradient  meshes  typically  require  manual  guidance  (taking  significantly

longer). 

Gradient meshes are also encoded using significantly less information than original bitmaps. But, this is an

unfair comparison given that the format is not capable of representing detailed photographic information.

The more complex vector graphic gradient meshes are required to become, the more information required to

describe them.[25]

Aside  from file  compression,  fractal  images  scaling  software  (such  as  Perfect  Resize[21])  represent  an

industry standard for photographic image enlargement, drawing on self-similar features within the image as a

whole. These relationships do not necessarily reflect the nature of original sub-pixel information, but tend to

convince the eye of perceiving high clarity visual information. For this reason, in the book Fractal Geometry:

Mathematical Methods, Algorithms, Applications,[24] resolution enhancement is purposefully used as a term

to refer to fractal image scaling as opposed to resolution enlargement. 

However, there are also image scaling approaches that focus more on reconstructing original information,

such as  deep convolution neural  networks,  where the training criteria  is  to  map low resolution to  high

resolution  ground  truth  images.  Convolution  neural  networks  are  discussed  in  the  final  section  of  this

chapter.

2.3 Neural Networks & Super-resolution

Neural networks can be used to model either discrete or continuous relationships between inputs and outputs.

The former scenario is typically referred to as classification. In the field of computer vision, RGB values

typically form the inputs to a neural network where the output acts as a discrete classification of image

content (such as cat or dog). Mapping a continuous relationship, as opposed to a discrete relationship, is

referred to as regression, where inputs relate to a continuum of real numbers instead of a discrete set.[26]

Neural network-based image enlargement can utilise either classification or regression, as discussed in the

following section.

2.3.1 Convolution Neural Networks
Much work has been conducted using convolution neural networks (CNNs) to enlarge photographic images.

CNNs take pixel data as input, as they are structured to act as a complex filter that convolves over an image,

providing a transformation from input to a particular output.[27]

Classification-based  image  scaling  approaches  include  Gustafson  and  Meyer,[28]  in  which  spline

interpolation parameters are adapted according to the classification of objects in corresponding parts of the

image.  The  results  show  improved  interpolation  quality  but  are  compared  only  to  standard  bicubic

interpolation.  Tree-based resolution synthesis[29] is  another approach in which image segments are first

classified by a CNN, after which standard interpolation algorithms are applied (such as bicubic or bilinear)

that best suite the characteristics of each image class.

However, as opposed to classification, more successful work has been conducted in the area of regression,

where low resolution pixel data acts as input, and higher resolution pixel data is directly generated as output

(often described in this context as super-resolution). Earlier research in CNN super-resolution resulted in

scaled images that appear marginally sharper or more detailed than standard interpolation algorithms, such as

Go et al 2000,[30] Hu 2004[31] and Aokage et al 2005.[32] Each of these approaches use relatively shallow
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network architectures consisting of 1 to 3 layers. However more recently, an online 2015 post[33] in the

engineering section of Flipboard (the social-network aggregation platform) reveals that the company has

been conducting research in the use of deep learning (many layered networks) for the purpose of super-

resolution. According to the post,  Flipboard's engineering team have used a CNN consisting of 8 layers

trained on low resolution/high resolution pairs. Good results were reported, but bicubic interpolation was

used as the only basis of comparison, with a tentative comment about the resulting network; “While this

wont have its place everywhere within our product, we feel it was a good cursory step forward to improving

quality.”[33]

Certainly, other deep learning architectures recently appear to offer significant potential in the area of super-

resolution. Reporting far better results Chao Dong et al 2014[33] trained a deep CNN to map low to high

resolution with considerable accuracy. As mentioned by the authors, “the image super-resolution problem has

not witnessed the usage of deep learning techniques to the best of our knowledge.” Their results show an

improvement  on  prior  state-of-the-art  super-resolution  algorithms based  on  sparse  coding,[34]  anchored

neighbourhood regression,[35] and others.[36][37] Additionally, as mentioned in the paper, the trained CNN

produces high quality output, yet far from converges on the global minimum (minimum error between input

and output). The authors therefore conjecture that further improvements could be made in the area of CNNs

with the use of a larger network and dataset. Their work appears to be the latest significant research in the

area of super-resolution, particularly using neural networks.

Neural network projects do also exist that directly map X Y co-ordinates to RGB values, instead of low

resolution to high resolution pixel information, however these tend to be toy projects or have unrelated

applications.

2.3.2 Other Neural Network Projects
ConvNetJS, for example, is a JavaScript neural network library developed by Standford PhD student Andrej

Karpathy. A browser-based demo of the ConvNetJS library, entitled “Neural Network 'Paints' an Image”,[38]

shows a image of kitten being mapped as an X Y – RGB relationship. The result is a representation of the

image that is very rough or lossy. The demo page mentions “It's a bit like compression, since the image

information  is  encoded in  the  weights  of  the  network,  but  almost  certainly  not  of  practical  kind.”  No

discussion is given to the potential for image scaling with greater network precision.

A website called Picbreeder is another example of neural network X Y – RGB mapping, but instead of error

backpropagation (as is  typical  of  neural  network training) an interactive genetic algorithm is used.  This

requires  visitors  of  the  website  to  rank  abstract  neural  network-generated  images  based  on  aesthetic

preference. The objective is not to encode pre-existing images but instead to generate new ones through

interactive evolutionary computation, with aesthetic appeal as the fitness criteria. This continues from earlier

work conducted by Karl Sims in the 1990s.[39] The resulting images are relatively abstract and significantly

lack detail, but the developers do briefly mention that “pictures evolved in Picbreeder have infinite resolution

(because they are stored as mathematical objects).”[40]

2.4 Summary

A variety  of  state-of-the-art  image  scaling  techniques  have  been  established  in  this  chapter  (S-splines,

fractals, and CNNs). Each approaches the problem of photographic image enlargement in a different way

while  relating  to  SFGs,  either  through  the  use  of  neural  networks,  the  achievement  of  resolution

independence, or establishment of curve fitting coefficients. These algorithms will act as critical points of

comparison in the following chapter (Chapter 3), which introduces details of SFG conversion and establishes

this technique's relative advantages and limitations. Visual comparisons will be presented, demonstrating the

quality and potential of SFGs, while leading to a discussion of the parts of the SFG conversion process that

require further development.
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Introduction to Scalable Function Graphic Conversion

3.0

SFGs are  an experimental  approach to high-quality  image scaling,  currently in  their  prototype stage of

development. This chapter will  provide an overview of the mechanisms of SFGs and the PhotoFunction

conversion software, going into further detail in areas that help to explain SFG advantages, limitations and

distinctiveness,  as  compared  to  previously  discussed algorithms.  This  will  act  to  frame a  discussion of

specific implementation improvements to be made PhotoFunction software and the SFG format, which will

take place in chapter 4.

3.1 Overview

3.1.1 The Conversion Process
SFGs store image data as the connection strengths (or weights) of a neural network, otherwise described as

coefficients of a continuous, bivariate, vector-valued mathematical function. This function is bivariate in that

it takes two inputs - a single pixel’s X and Y co-ordinates; and vector-valued in that it gives multiple outputs

-  the  pixel’s red,  green  and blue  (RGB)  colour  channels.  The  function  thereby describes  a  continuous

relationship between pixel co-ordinates and corresponding colour channels.[4] Crucially the variables bear

no reference to a specific resolution, in contrast to the spline approach discussed in Chapter 2.

V (x , y ) = ⟨ R(x , y ) , G( x , y ), B (x , y ) ⟩

Mapping  this  abstract  relationship  as  a  continuous  function  is  a  regression  problem,  requiring  a  time-

consuming  gradient  descent  algorithm.  During  this  process  errors  are  backpropagated  (fine-tuning  the

mathematical function’s constants such that the error value between output RGB values and expected RGB

values decreases to within an acceptable range). After this learning process is complete, the function can be

fed X and Y coordinates of any pixel in the image, and return the correct RGB values. The image can now be

stored in  a  resolution independent  manner, encoded as  the constants  of  the mathematical  function.  The

function’s structure is that of a fully connected, feed-forward, artificial neural network.[4]

3.1.2 Extra-pixel Generalisation

Fig. 5a, original sunset41

Fig. 5b, extrapolated sunset[42]

As a process of neural network generalisation (or educated guessing), feeding the SFG X and Y co-ordinates

that  were not  defined in  the original  image results  in  high quality  pixel  estimations.  This  capability  of

generalisation can be illustrated by observing a function graphic (a general case of SFGs developed by the

author) that has extrapolated outside the borders of the original bitmap, synthesising extra-pixel values (see
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Fig.5b). Features and colours that existed inside the bitmap are transformed into the extended image. An

'Extrapolatable Function Graphic' such as this requires the entire image to have been mapped as a single,

continuous mathematical function.[42] However the larger and more complex the original bitmap image, the

increasingly large the mathematical function required to adequately model it. In this case it can be seen that

the original  bitmap (Fig. 5a) possesses features that the function graphic (Fig.  5b) has not been able to

accurately represent. 

However, for the purpose of interpolating (rendering sub-pixel values) a single mathematical function is not

required to model the entire bitmap. Instead the image can be divided into small tiles (10 by 10 or 20 by 20

pixels),  with a single function required only to accurately model a single bitmap tile.  This significantly

reduces the necessary size of each function, and necessary time for conversion.[43]

3.1.3 High-quality Sub-pixel Generalisation
Essentially, due to tiling, a bitmap can be completely modeled in all of its detail as an SFG (a collection of

neighboring  continuous  functions),  which  can  then  be  rendered  at  a  much  higher  resolution  while

maintaining smooth gradients, sharp lines and details. Sub-pixel values are synthesised by generalising about

local pixel patterns, resulting in aesthetic quality that rivals or even surpasses fractal image enlargement – the

industry standard for photographic resolution independence. Fig. 6a highlights a 20 by 20 pixel tile that has

been scaled up in figures 6b – e using a nearest neighbor, bicubic, SFG, and fractal algorithm (Perfect Resize

software[21]), respectively. 

Fig. 6a, Identified tile, original sunset[41]

Fig. 6b, nearest

neighbour[43]

Fig. 6c, bicubic[43] Fig. 6d, SFG[43] Fig. 6e, Fractal[43]

3.2 Relative Advantages & Limitations

3.2.1 SFGs vs. Fractals: File Format Redundancy
The SFG format is capable of accurately describing a bitmap's pixel-level details, in a way that results in

high-quality generalisation about sub-pixel information. However the process of converting a bitmap to an

SFG representation can take hours or days, even for small thumbnails.[4] This is compared to the seconds it

takes to generate a fractal representation. Also, while both fractal and SFGs achieve resolution independence,

significantly  more  information  appears  to  be  required  to  encode  images as  an  abstract  X  Y –  RGB

relationship than in terms of self-similar transformations. Fractals essentially act as a form of compression,

while SFGs require as much as 30 times more information than the original bitmap.[4]

13



Nevertheless redundancy in the SFG file format is likely a contributing factor to this problem. Chapter 4

(Improvements to PhotoFunction Software) will discuss means of reducing redundancy by adapting neural

network sizes to the complexity of specific images, instead of relying on a fixed network size for all image

tiles.

The conversion-speed disparity between fractals and SFGs is also a large problem, with spline interpolation

similarly capable of producing results in a matter of seconds as opposed to SFGs. Significant differences

exist  in  the  way  that  splines  and  SFGs  model  pixel  data,  and  these  highlight  the  main  reasons  for

PhotoFunction's slow conversion speed (discussed in the following three sections). 

3.2.2 SFGs vs. Splines: A Pixel as a Domain
As mentioned by Siu and Hung 2012,[44] spline interpolation techniques tend to treat pixels as points that

belong to a precise X Y co-ordinate. This is only the case if the photographic image is highly aliased (where

pixels reflect sparsely sampled information). Arguably, it is more accurate (but processing intensive) to treat

a  photographic  pixel  as  a  domain  (a  region  of  possible  co-

ordinates),  each  with  an  unknown  range  (set  of  possible

colours)  except  for  an average range across  the domain as  a

whole.

Essentially, as illustrated in Fig.  7,  one grey pixel  at  the co-

ordinate (0,0) does not necessarily indicate that a grey object

existed there as photographic subject matter. Instead this pixel

value suggests that for any set of objects that existed within the

pixel domain (between the co-ordinates {0,0}, {1,0}, {0,1} and

{1,1})  the only known value is  the average colour, which is

grey. Some objects may have been white and some may have

been black (but all averaged to from a single pixel value).

Interpreting  the  data  such  that  pixels  represent  domains,  as

opposed  to  precise  points,  adds  complexity  and  time  to  the

modeling process, but allows underlying colour relationships to

emerge more clearly. This  is  achieved in PhotoFunction by a

form of batch gradient descent that has been adapted for SFG

conversion. During conversion, a batch of sub-pixel co-ordinates

are fed as inputs  to  SFG neural  networks at  regular intervals

within the domain of a single pixel (5 by 5, 25 sub-pixel co-

ordinates, see Fig. 8). For each sub-pixel co-ordinate the input

values  reaching  each  neuron  in  the  network  are  recorded,  in

addition to the output values for the network as a whole. After

25 evenly spaced sub-pixel co-ordinates have been fed through

the network, an average output value for the network as a whole

is  calculated,  in  addition  to  an  average  input  value  for  each

neuron.  These  averages  are  then  used  to  backpropagate  error

through the network, updating weights accordingly.

This improvised technique is slower due to multiple sub-pixel co-ordinates needing to be fed as inputs, as

opposed to a single pixel co-ordinate if pixels were to be treated as normal training data points. However it

ensures that the network treats pixels appropriately, as an average range over a domain. Additionally, this

batch approach provides some degree of resistance to Runge's Phenomenon.

3.2.3 SFGs vs. Splines: Runge's Phenomenon & the Variable n
Runge's phenomenon describes a circumstance in which, for high values of n (number of data points to be

mapped by a single continuous function), interpolated values are inclined to oscillate significantly between

data points, resulting in visual artifacts.[45] For SFGs, modeling the pixel as a domain means that sub-pixel
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co-ordinates feature as artificial data points during the training process. This reduces the spaces within which

Runge oscillations are more inclined to emerge.  Conversely, spline (or piecewise polynomial) interpolation

overcomes  Runge's  phenomenon  by  reducing  n  to  as  few  as  2  for  each  spline  (each  spline  together

constitutes a larger piecewise defined function).[46]

The benefit of modeling high values of n as a single continuous function (as with SFGs) is that it allows for

more  representative generalisation (based  on a  larger  amount  of  data).  On the other  hand,  this  directly

contributes to the slowness of SFG conversion due to a high number of training data points to process.

Another significant aspect of SFG conversion that helps to overcome Runge's phenomenon is the application

of curriculum learning. This further contributes to the slowness of SFG conversion. As discussed in the

following section.

3.2.4 SFGs vs. Splines: Runge's Phenomenon & Curriculum Learning
There are various approaches to avoiding Runge's Phenomenon that still allow for large numbers of data

points to be mapped by a single continuous function. These are referred to as regularisation methods, where

restrictions are imposed on the degree of complexity allowed for the fitted or trained function.[47] Several

such processes have been explored to help avoid Runge's phenomenon in SFGs (such as the early stopping of

training, a reduced number of neurons, and altered error functions) but in each instance this severely limited

the amount of photographic detail or sharp edges that could be modeled.

Instead,  the  main  approach  through  which  Runge's  Phenomenon  is  avoided  is  by  applying  curriculum

learning as a continuation method. Continuation methods are optimisation strategies where the error function

has been smoothed in an attempt to better frame the problem, and curriculum learning is a term used to

describe a staged process where simplified training data is presented to a neural network first before moving

on to the proper training data.[48]

Effectively, SFGs are first  trained on an image that has been scaled up using bicubic interpolation. This

produces  smoothly  inflated  training  data,  filling  in  the  space  between  original  data  points  with  non-

oscillating values. Training on this data first ensures that the network avoids Runge's phenomenon. The next

stage of the learning process requires that the smooth training data is switched for the original training data.

At this final stage in training it is essential that pixels are treated not as individual points but as domains (as

discussed previously). This allows the image to be dramatically sharpened, significantly surpassing the visual

quality of bicubic interpolation. 

At  this  stage  the  neural  network  is  not  as

resistant to Runge's phenomenon as in the first

stage of training, but this is necessary. A degree

of Runge's phenomenon appears to provide the

illusion of greater detail in the rendered image.

Fig.  9  compares  a  scaled  SFG  to  bicubic

interpolation. One of the various SFG 'details'

that can be referred to as an artifact of Runge's

phenomenon  has  been  highlighted  by  a  red

square. 

Runge's  phenomenon can be described as the

over complication of an interpolant, but the idea of SFGs is that they should indeed attempt to synthesise

complex sub-pixel information (so long as it is based on a learnt pattern from surrounding pixel data). By

ensuring  that  the  image  has  first  been  smoothly  modeled  in  its  entirety,  later  instances  of  Runge's

phenomenon (during  the  sharpening  phase)  are  intended to  be  based  on  or  influenced by  learnt  image

content.

Constructing two learning phases reduces the speed of SFG conversion, but is necessary to minimise the

emergence of unwanted artifacts. Therefore, the interpretation of pixels as domains, and the high number of
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data points modeled by a single continuous function, in addition to this multi-stage learning process, all

contribute to the slow conversion process of SFGs.

However, the most significant draw backs of SFGs relate to the way in which the learning or conversion

process takes place compared with CNN image scalers. These issues are discussed in the final two sections

of this chapter, before a summary that consolidates the information that has been presented so far.

3.2.5 SFGs vs. CNNs: Training on Demand
Unlike SFGs, a significant benefit of CNNs are that they are only required to be trained once (using low

resolution and high resolution image pairs as training data) and can then be applied to upscale any image

given as input.[7] This is contrast to the SFG approach, in which training is required to take place on demand

for each image as a conversion process (the trained neural networks essentially become the converted image

representation).  Measures  for  reducing demand on the SFG conversion process  (by utilising pre-trained

neural networks) will be discussed in Chapter 4.

Nevertheless, there are also fundamental differences in the nature of the input/output relationships that SFGs

and super-resolution CNNs attempt to model. The connection between low resolution and high resolution

data is intuitively less abstract than the relationship between arbitrary X Y co-ordinates and RGB values.

Most importantly unlike super-resolution CNNs, where only a general data fit is necessary (or even enforced

through a process of regularisation),[7] SFGs are required to model training data with very high precision to

actually represent the detail of the photographic image. As is typical of neural network training, progress

significantly slows as the global minimum (minimum error) is approached. 

3.2.6 SFGs vs. CNNs: Approaching the Global Minimum
The simplest reason for this decline in the speed of progress is that the size of network updates are based on

the size of errors encountered.  Error values decrease as the global  minimum is approached,  so network

updates reduce and progress slows proportionately.

Further, 100% of the training data contributes to learning initially, as the network encounters a high error

value for each data point. Towards the end of the training process only a fraction of the training data present

high error values, and so opportunities for learning occur less frequently. This problem is referred to as data

sparsity or “the curse of dimensionality.”[49] The current SFG implementation reduces this problem through

importance sampling, training high error networks more frequently than lower error networks over the course

of the conversion process. Further measures that might reduce the likelihood of error disparity between data

points are discussed in the following chapter (Improvements to PhotoFunction Software).

Nevertheless, this problem of slowed error minimisation is not such an issue for super-resolution CNNs,

where there is an inherent limit to how far error can even be minimised (given that the information needed

for  100% high-resolution ground truth  accuracy  can almost  never  be contained in  low resolution  input

images).

3.2.7 Aesthetic Comparison
As described in Chao Dong et al's 2014 paper, deep super-resolution CNNs represent the state-of-the-art in

super-resolution. An open source implementation (based on the research of Chao Dong et al) is available on

GitHub,[50] with a live version hosted at a website called Waifu2x.[51] With ease of access to a high quality

CNN, results from the Waifu2x can be used as a benchmark against which the current and further developed

SFG implementation can be compared, along with leading fractal and spline-based commercial algorithms.

As can been seen from Figures 10a-f, SFGs produce compelling results that are on par with, or variably

appear to exceed, the visual quality of these state-of-the-art approaches (see Chapter 5, Evaluating Results,

for mean squared error).  SFGs represent  a novel  technique for high quality image scaling which,  given

further development, has potential for significant improvements in conversion speed and storage efficiency,

as will be outlined in the following chapter (Improvements to PhotoFunction Software).
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Fig. 10a, SFG Fig. 10b, Waifu2x Fig. 10c, S-s max Fig. 10d, Fractal Fig. 10e, Bicubic Fig. 10f, Nrst N.

3.3 Summary

This  chapter  has  provided an  introduction  to  the  mechanisms of  SFGs,  and  established  the  conceptual

strengths  and  weaknesses  of  encoding  image  information  as  a  network  of  artificial  neural  connections

(determined through sub-pixel-batch gradient descent and curriculum learning). 

Particular  problems have been identified relating to SFG file redundancy (compared to the compression

capabilities of fractal images) and the time consuming conversion process, which takes place on demand (as

opposed to super-resolution CNNs which are trained in advance).  The following chapter will outline how

further research and development in the areas of machine learning and high performance computing can

improve these issues. Chapter 4 will also explain how the addition of simple image filters can help to further

improve image quality (filters that are already employed by S-spline Max and fractal enlargement software).
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Improvements to PhotoFunction Software

4.0

4.1 Machine Learning

4.1.1 Tile Size & the Global Minimum
As discussed in the previous chapter, the high number of data points (n) modeled by SFGs in comparison to

spline techniques directly contributes to the slowness of SFG conversion. It has also been discussed that

segmenting an image into tiles (as opposed to modeling an image with as a single continuous function) is

what allows SFGs to accurately model a photographic image within an achievable time-frame. But an aspect

that has not been adequately explored in the development of PhotoFunction is the degree to which aesthetic

quality is effected by further reducing tile sizes and therefore the value of n (below 10 by 10 pixels). This

would reduce the number of data points to be processed and could act as a means of significantly improving

conversion speed and file size, utilising smaller neural networks that model smaller tiles.

The  use  of  smaller  tiles  would  also  decrease  the  likelihood of  error  disparity  between  data  points,  by

reducing the potential for relatively high error data points to be visited less frequently. This problem has been

discussed in the previous chapter as contributing to decreasing training progress as the global minimum is

approached.

On  the  other  hand,  the  basis  of  SFG image  scaling  is  that  the  neural  networks  have  a  broad  enough

experience of data to be able to generalise (based on that data) and render plausible sub-pixel values. The

trade-off relating tile size and generalisation quality requires further investigation. It may be the case that

similar quality images can be produced through the use of much smaller tiles (and neural networks), resulting

in significant speed and file storage improvements. 

The  consideration  of  smaller  tile  and  neural  network  sizes  underpins  the  other  machine  learning-based

improvements that are intended to be made to PhotoFunction software. These are:

• The establishment of a database of small (efficiently stored) pre-trained neural networks,

reducing the amount of on demand training during the SFG conversion process. This was

identified  in  the  previous  chapter  as  a  significant  limitation  of  SFGs in  comparison  to

CNNs,  which are  trained in advance.[7] The establishment  of a pre-trained database of

neural networks will be discussed in the following two sections, Initialisation & Pre-training

and Data Pre-processing & Feature Space reduction.

• The development of a fine-tuning algorithm that  facilitates neural  growth,  ensuring that

network  sizes  are  based  on  the  complexity  of  the  respective  image  tile  (reducing

redundancy in the SFG file format, and adapting small  pre-trained networks to increase

capacity for greater modeling complexity). This will be discussed in the section,  Neuron

Redundancy & Adaptive Growth. 

4.1.2 Initialisation & Pre-training
Pre-training is the process of training a neural network in a way that encourages initial features to be learnt in

a data set that are expected to provide a useful starting point for the main training process (to avoid local

minima[52]  and  other  problems[53]).  The  current  SFG  software  initialises  weights  using  a  heuristic

approach, where random variance in the intialisation of each neuron's output weights is capped relating to the

number of that neuron's input weights. This prevents every neuron from initially having drastically different

output values (convergence on a good solution can take longer or is less likely to take place if neuron outputs

begin with significant disparity between them[54]). A further improved approach to initialisation would be to

pre-train networks on a set of features that are known to be beneficial starting points to the general learning

process.

18



However, given that the training data (photographic image tiles) can contain a wide range of characteristics

in terms of colour, geometry and texture (with some image tiles contrasting with others) the existence of a

general set of features on which all neural networks should be pre-trained is not apparent. This has led to the

decision to establish a database of pre-trained networks, where each will have been pre-trained on a specific

set of features and can be retrieved from the database by closest match to image characteristics. 

There is, however, a potentially huge number of image patterns on which neural networks could be pre-

trained.  Determining  which  are  the  most  useful  and  representative  would  be  problematic.  Instead,  this

potentially huge space of features can be reduced in a variety of ways, such as if smaller image tiles were to

be used (thereby increasing the representativeness of sampled pre-training data). To even further  improve

the broad applicability of pre-training data, a pre-processing trick can be performed, as discussed in the

following section.

4.1.3 Data Pre-processing & Feature Space Reduction
Pre-processing filters are applied to training data before learning takes place in order to present it in ways

that are more compatible with neural network learning.[55] A simple example is normalising image data

from the range 0 to 255 to the range -1 to 1 (more in line with neuron activation functions). This is a pre-

processing step performed by the SFG conversion software (both for RGB values and for X Y coordinate

values).  Typically  data  pre-processing increases  the chances  of  good quality  convergence on the global

minimum (minimum error).[56] 

Currently  this  pre-processing  filter  is  applied  to  RGB  training  data  irrespective  of  specific  image  tile

characteristics. However image tiles (particularly smaller ones) often only occupy a fraction of the possible 0

– 255 range. To better accommodate this variety, a simple analysis could be performed to determine the RGB

ranges for each image tile, allowing for tile specific data normalisation. This would ensure that each image

tile ends up occupying the full -1 to 1 range, as opposed to just a fraction of it. Centering the data at zero in

this  way is  useful  to  maximise the initial  size  of  neuron activation function derivatives,  which directly

correlates with learning speed.[57] Also, performing this pre-processing step independently for each colour

channel will result in a relatively monochromatic appearance, as the differences between colour channels are

minimised (particularly for smaller tiles, which initially occupy a smaller colour depth range). See Fig. 11b

for an example of the described colour channel independent pre-processing filter, though still in the range 0 -

255 (generated using author's code).

Fig. 11a, Lenna, unprocessed Fig. 11b, Lenna, 4 by 4 preprocessed tiles

This pre-processing step could be reversed in final renderings of trained SFGs to obtain full colour scaled

images. Most importantly, with tiles that are monochromatic, the feature space for possible pre-training data

can be reduced from 256(3n) to 256(n), where 256 is the pixel colour depth, n is the number of pixels and the

coefficient is the number of colour channels. 

This is still to much data to be represented by a pre-trained database. To reduce this feature space further, it

will be necessary to decrease the colour depth represented in training data (from  256), in addition to the
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image tile resolution (n). Retrieved neural networks can then be fine-tuned to higher precision or resolutions

as  necessary.  This  will  require  a  facility  for  adding  complexity  to  networks,  increasing  their  size  and

modeling capacity during fine-tuning (as addressed in the following section).

4.1.4 Neuron Redundancy & Adaptive Growth
Image tiles that are modeled by SFG neural networks vary greatly in terms of complexity, from almost

complete pixel uniformity to significant differentiation. Instead of relying on a fixed network size (as is

currently the case) it would be better to ensure that a minimal network is used for the given pixel data. It is

known that smaller networks with fewer parameters can be trained significantly faster, generally requiring

fewer training epochs to minimise errors,[58] in addition to requiring a reduced number of parameter updates

for  each  epoch.  Smaller  networks  in  relation  to  training  data  also  tend  to  have  better  generalisation

capabilities.[59]

On the other hand networks need to be large enough to model sufficient complexity in the given data. Trial

and error has been the approach used to determine a generally suitable network size for the current SFG

conversion software (7 layers, 30 neurons each; 5732 parameters). This size is applied to every SFG network

regardless of the characteristics of the image tile on which the network is trained. As an improvement, one of

two approaches could be used to strike an optimal network size dynamically, ensuring that each is only as

large as required. 

Pruning is one such approach, in which an intentionally over-sized neural network gradually has weights

removed until overall performance is adversely affected. Weights can be selected for removal based on their

estimated importance, for which various heuristic techniques exist (such as optimal brain damage[60] and

optimal brain surgeon[61]). However, an alternative and simpler approach is to begin with a network that has

a minimal number of neurons. Extra neurons are added to the network during the learning process whenever

improvement is no longer taking place with the provided number of neurons. Training is deemed complete

once overall error has been minimised below a required threshold. The network then contains a minimal

number of neurons required to fit the training data.[62]

There appears to be far more literature on the topic of pruning. This is likely due to the advantages of  larger

networks in that they tend to be more flexible and less sensitive to the choice of initial weights.[63] However

neural growth is the preferable option in this instance, as it facilitates efficient database storage (small initial

networks) and subsequent adaptability to achieve the necessary modeling capacity and precision.

By normalising training data appropriately for each image tile, utilising efficiently stored pre-trained neural

networks,  and  reducing  neuron  redundancy  through  tile  specific  network  growth,  it  is  anticipated  that

improvements can be made in terms of the efficiency of SFG conversion. Most importantly, segmenting an

image into smaller  tiles has the potential to dramatically speed up the learning algorithm in addition to

reducing SFG file size (by reducing the necessary size of neural networks). Exploring the effects this will

have on the aesthetic quality of SFG images will determine the extent to which tile sizes can be reduced.

The first section of this chapter has focused specifically on improvements that can be made to machine

learning aspects of PhotoFunction software, such as pre-processing, intialisation and training procedures.

The next section will focus on high performance computing concepts, before a brief discussion of aesthetic

enhancing image filters in the final section of this chapter.

4.2 High Performance Computing

In terms of  general  code structure,  the current  SFG conversion software is  not  very well  optimised for

runtime efficiency (see Appendix-2). Four general areas that can be improved upon are identified in the

following sections; Concurrency, Memory Caching, Precomputation and Compiler Optimisation. 
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4.2.1 Concurrency 

As described by Amdahl's Law,[64] the theoretical speed increase that is made possible through parallel

computing is determined by the proportion of processing time that is spent executing a parallelisable task. As

an example, PhotoZoom Pro (the software that hosts S-spline Max) is  highly parallelised,  and has been

praised for featuring scalable run-time performance proportional to the number of available processor cores.

[65] 

The process of SFG conversion is also highly parallelisable, with image tiles capable of being processed

simultaneously on separate cores over the entire conversion process. Yet despite this, the current conversion

process is completely sequential and handled by a single thread. Therefore, a relatively simple means of

increasing speed is to determine the number of cores available at runtime, and to distribute a group of image

tiles to separate threads that can run independently on each core. 

However, neighbouring neural networks are required to share some information during the second stage of

conversion (ensuring seamless overlap). Therefore it will need to be determined whether or not memory

inconsistency between separate threads (that handle neighbouring networks) becomes an issue in this project.

In such case volatile access modifiers may need to be employed on the weights of fringe located networks

(located a the fringes of  an area handled by a specific  thread).  This  would have the affect  of  avoiding

possible discontinuities between the output of fringe networks, but will negatively affect runtime speed due

to the time it takes to access main memory as opposed to cached memory.[66]

4.2.2 Memory Caching
Cached memory is significantly faster to access than main memory. Caches store information based on the

likelihood that it will need to be accessed by a program in the future. This can be be estimated based on the

principle of spatial locality, suggesting an increased likelihood that a program will need to access a data

element that exists at a close storage location to another data element that has just been accessed. For this

reason data elements that are stored in close proximity are often fetched and cached as a block of contiguous

memory, or cache line.[67]

The expectation of spatial  locality could be better  utilised by the current  SFG software.  Image tiles are

currently retrieved in random order, with the neural network for each tile only trained on one data point

before another tile/network is randomly selected. A better approach would be to select tiles sequentially, and

to only move on to the next tile once the previous tile has been sufficiently mapped. This would increase the

frequency with which closely stored data elements are accessed, taking advantage of contiguous memory

caching.

Unfortunately  this  approach  cannot  be  applied  to  the  second  phase  of  SFG  training,  at  which  point

neighbouring neural networks are required to share information during the training process. At this point all

networks must make progress together.

4.2.3 Precomputation
There are also a significant number of calculations that are preformed during SFG conversion that could

benefit from being precomputed and stored as a lookup table. This would reduce the overhead of having to

perform identical  calculation  repeatedly  (a  technique  that  can  provide  significant  run-time performance

gains[68]).

The most obvious place in which this technique could be implemented is in calculating the output of certain

neurons. Two kinds of neuron activation functions are used in SFG neural networks. These are sine (for the

majority of neurons) and arctangent (for the last hidden layer of neurons). While arctangent is not periodic

and has a domain that spans all real numbers, sine has a period of 2π, beyond which output values display a

repeating pattern. A lookup table could therefore be efficiently precomputed for the sine function, with the

need to only store outputs for the domain 0 to 2π.
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4.2.4 Compiler Optimisation
In addition to increasing runtime speed through the use of precomputed values, the SFG source code in

general could benefit from significant refactoring (for the purpose of readability as well as optimisation).

Aside from containing redundant variables that are no longer used, the majority of methods are currently

extremely long (see Appendix-2). In order for Java's just-in-time (JIT) compiler to effectively perform code

optimisation such as inlining (which avoids the overhead of method invocation), it is necessary for methods

to be kept small and compact.[69] It is therefore anticipated that speed increases could be gained by tidying

code and reducing the size of methods.

4.3 Image Filters
Finally,  having  achieved  an  updated  PhotoFunction

implementation  that  has  been  optimised  for  efficiency

through  the  application  of  both  high  performance

computing  and  machine  learning  concepts,  aesthetic

enhancing image filters will also be implemented to further

improve perceived image quality. These filters are known

as  noise  and  unsharp,  both  of  which are  employed  as

features  of  PhotoZoom Pro (S-spline Max software)  and

Perfect Resize (fractal image scaling software).[70]

Unsharp  increases  contrast  at  the  edge  of  objects,

convincing the eye of greater clarity. Fig. 12 is an example

image that has been created using the image manipulation

software GIMP. The top half of the image represents the

original  and  the  bottom  half  has  had  an  unsharp  filter

applied.  Unsharp  subtracts  from  pixels  the  positive  or

negative difference between a blurred version of the image

and the original version of the image.[71]

Additionally,  a  small  amount  of  random noise  (simulated  film  grain)  will  be  explored  as  a  means  of

suggesting  further  photographic  detail  or  granularity  for  scaled  SFGs.  As  described  by  Perfect  Resize

documentation, “adding a modest amount of Film Grain can make your image appear sharper visually.”[70]

Nevertheless,  the topic  of  aesthetics  is  a  subjective one.  This  will  need to  be taken into account  when

evaluating the results of this project. The following chapter will discuss how the research results will be

evaluated, highlighting the need for human participants and the problem of relying purely on an algorithmic

error calculation.

Additionally, the choice of programming language will be justified, and this will lead to the conclusion and

summary of this document.
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Further Considerations

5.0

5.1 Evaluating Results

In order to gauge the prediction error of scaled images, mean squared error (MSE) will be used to compare

against corresponding ground truth, high-resolution images. The Kodak lossless true colour image suite[72]

will be used due to their popularity as standard test images in general image processing research. This will

provide  an  accurate  measure  of  how  closely  scaled  SFG  images  have  managed  to  reconstruct  lost

information.

However  it  would  be  problematic  to  rely  solely  on  this  algorithmic  approach to  graphic  evaluation.  A

preliminary investigation  reveals  that  industry  standard

image scaling software, such as Perfect Resize, produce

scaled  images  that  are  not  as  accurate  as  simpler

algorithms  (such  as  bicubic  interpolation)  at

reconstructing an original high definition image. Yet the

results of Perfect Resize are visually sharper and appear

to  have  significantly  more  clarity  than  bicubic

interpolation.

The table to the right shows the results of low resolution

24-bit images that have been scaled up by a factor of two

and  compared  to  the  corresponding  high-resolution

ground truth images. As can be seen, according to MSE

(MSE  values  correlate  positively  with  the  degree  of

error), Perfect Resize and SFGs are roughly as poor as

nearest  neighbour  interpolation  (the  simplest

interpolation  algorithm)  at  reconstructing  the  original

high-definition image. 

This can be understood in that the fractal approach to image scaling is fundamentally different to spline

interpolation  and  super-resolution  CNNs  (for  which  the  direct  basis  of  training  is  high-resolution

reconstruction).[7] The aim of fractal image scaling is to synthesise visually plausible sub-pixel information

based on self-similar features within the image as a whole (whether or not such information existed at an

exact  location  in  the  original  image).  This  is  discussed  in  chapter  2,  referring  to  the  term  resolution

enhancement over resolution enlargement.[24] Similarly, SFGs aim to synthesis sub-pixel information by

utilising patterns that have been identified in other parts of the image. These relationships need not exactly

reflect the nature of original sub-pixel information, but tend to convince the eye of perceiving high clarity

visual information.

Essentially, human perception is a success criteria that is difficult to accurately define algorithmically. For

this reason a sample of members of the public (who will be asked to rank scaled images in terms of clarity

and attractiveness) will be critical to the aesthetic evaluation for this project. This will provide a measure of

the visual  plausibility of sub-pixel  information,  and the degree to  which scaled images posses  apparent

clarity and detail.  MSE will  nevertheless provide a valuable metric that can give further insight into the

effects that updates to the SFG conversion software have had on scaled image quality, particularly regarding

the reduction of tile sizes and the effect on generalisation ability.

Other  than  evaluating  the  aesthetic  aspects  of  the  updated  SFG  conversion  software,  efficiency

improvements will  need to be determined.  This will  involve establishing benchmarks for comparing the

updated and previous versions of SFG conversion software, in terms of conversion speed and resulting SFG

file sizes. Ideally these benchmarks will also be run against industry standard, proprietary algorithms. In

terms of performance speed, this will depend on obtaining command line versions of commercial image

23

Mean Squared Error (2x scaled shell
image compared to high-resolution

ground truth)

Algorithm MSE

Waifu2x (SRCNN) 373

S-spline Max 456

Bicubic spline 473

Scalable Function Graphic 523

Nearest Neighbour 610

Perfect Resize (Fractal) 778



scaling algorithms, such that completion can be automatically detected and timed. This may not be possible

in each case,  but  given the latency with which SFG conversion software currently achieves  its  results,

significant improvement on the previous implementation will still certainly be quantifiable.

5.2 The Jave Language

Finally, Java is the programming language that will be used in this project. This is largely due to the fact that

the  current  SFG implementation  has  been  programmed in  Java.  Nevertheless,  the  language  is  platform

independent, allowing for runtime optimisations to be performed that are platform specific.

Additionally  the  JAR (Java  Archive)  file  type features  optional  compression  and can act  as  a  resource

container, accessible from a Java program.[73] This will allow for pre-trained neural networks to be stored in

an optionally compressed format, as a single Java friendly file. As the pre-trained networks are only required

to be retrieved (not updated and stored), a fully functioning database is not necessary. The option to turn JAR

compression off could also result in faster runtime access. This trade-off between JAR file compression and

runtime speed will need to be investigated.
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Conclusion

6.0

The intention of this document has been to set  the context  for a research project  that  aims to build on

PhotoFunction  software;  a  prototype  system  for  high  quality  photographic  image  enlargement.  Image

upscaling is a non-trivial problem in the field of digital signal processing that requires the spatial resolution

of information to be artificially inflated in a way that  is  plausible to the eye and/or accurate to a high-

resolution ground truth image. The main challenge revolves around the fact that photographic images are not

expected  to  represent  smooth  functions.[74]  They  are  generally  composed  of  discontinuous  edges  and

granular textures. Predicting or synthesising these patterns realistically at the sub-pixel level requires the

utilisation of context specific information acquired from surrounding data. 

PhotoFunction and the SFG file format are an experimental means of addressing this challenge, synthesising

new  pixel  data  based  on  a  continuous  mathematical  model  of  image  patches  (providing  a  resolution

independent image format). There are many other high-quality image scaling techniques, the most pertinent

of which have been discussed in this review; from fractals which efficiently encode self-similarities within

an image,  to  CNNs which learn context  specific  transformations from low-resolution to  high-resolution

images (both introduced in chapter 2). There are also techniques that have not been discussed, such as multi-

scale texture synthesis,[75] which facilitates infinite example-based texture zooming, though it appears to be

unsuited to photographic image enlargement (see appendix). 

By comparison to fractals, CNNs and splines, SFGs are currently limited by impractically slow conversion

times and large file sizes. This is due to a variety of factors.

• As opposed to fractal images, SFGs establish resolution independence as an abstract X Y – RGB

relationship that appears to require more storage information than the original bitmap (discussed in

Chapter 3). 

• Unlike CNNs, SFGs require live training specific to individual images and are required to accurately

minimise the error function (Chapter 3). 

• Also, unlike splines, an SFG models a large number of pixels continuously, necessitating a multi-

stage learning process to avoid problems with Runge's phenomenon. Further, SFGs interpret pixels

as domain averages, necessitating sub-pixel batch training which takes longer (Chapter 3).

Nevertheless, the aesthetic quality of SFGs rivals (or even surpasses) these industry standard techniques. To

determine the extent to which SFGs can represent a more practical approach to high-quality image scaling

further development to improve runtime and storage efficiency is necessary.

Chapter 3 and Chapter 4 have provided an overview and theoretical basis for the development intentions of

this project, building on the content of previous chapters and referring to established machine learning and

high performance computing concepts.  As discussed in Chapter 4, a  database of broadly applicable pre-

trained neural networks (trained on a reduced feature space) will be developed. Retrieved networks will be

adaptable to specific image tiles (through channel specific pre-processing filters and neural growth). This

will  act  to  provide  a  head  start  on  the  SFG conversion  process  (reducing  the  amount  of  live  training

required),  which will  be  optimised for runtime efficiency  by applying concepts such a concurrency and

precomputation. 

Specific questions that require further investigation have also be identified. These are:

• The  relationships  between  image  tile  size  and  neural  network  generalisation  capabilities.  It  is

anticipated that smaller tiles will allow for faster conversion and smaller file sizes (as mentioned in

Chapter 4),  however it is not clear the extent to which tile sizes could be further reduced without

negatively affecting network generalisation capability.

• The  extent  to  which  multi-threaded  conversion  results  in  thread  memory  inconsistency  errors

between fringe located neural networks.
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• The extent to which JAR compression of pre-trained neural networks effects their retrieval speed,

and therefore runtime performance.

• The extent to which aesthetic quality can be further improved by using image filters such as noise

and unsharp.

Plans for evaluating this upcoming project have also been discussed in Chapter 5, involving speed and file

size benchmarks, human feedback regarding aesthetics, and ground truth error calculations.

An expected time-line and risk analysis for this project can be found in the following pages.

6.1 Future Research

Future work (beyond the scope of this research) is likely to focus on the development of an integration based

training algorithm that calculates mean neural network output over a specific domain of inputs (instead of

approximating the average based on sub-pixel  coordinate sampling, as discussed in Chapter 3,  which is

assumed to be slower and produce less accurate mathematical models). The challenge this presents is that the

backpropagation of error through a network requires that a record is kept of neuron inputs that correspond to

network outputs. It is not obvious how these combined values could be determined through the process of

integration, which is the standard approach to calculating the mean output of a function over a given domain.

Other  work  might  involve  further  exploring  the  effects  of  altering  neuron  activation  functions,  and

establishing a specialised topology that can more efficiently encode image information than fully connected

networks.

26



Work Plan

7.0

Expected Time-line

The estimated time required to complete the tasks below and reach each milestone has been illustrated using

a colour-coded Gantt chart. Work on the project implementation will begin on 23rd May, and the intended end

date for the project is the 22th August (3 months). 

Milestone 1: Database of pre-trained neural networks (20th June)

The first work-plan milestone is the completion of a database of broadly applicable pre-trained networks (of

minimal size) that can be efficiently stored and retrieved by closest match to image characteristics. Utilising

pre-trained  networks  in  the  SFG conversion  process  prevents  the  need  to  train  networks  from scratch,

increasing conversion speed.

Task Deliverable

1.1 Explore  the  relationship  between  network

size,  and  SFG  conversion  speed,  storage

efficiency and aesthetic quality. (30th May)

Data  describing  a  continuous  relationship  between

network  size  and  conversion/storage  efficiency,  and  a

qualitative  relationship  between  network  size  and

aesthetics.

1.2  Determine,  through  experimentation  and

using  the  findings  from  task  1.1,  an  efficient

structure  for  pre-trained  neural  networks,  in

terms of size/complexity and broadly applicable

image  features  on  which  each  network  in  the

database should be trained. (20th June)

A  program  for  automatically  generating  training  data

(image features) and for pre-training neural networks on

such data.

An altered SFG conversion implementation, featuring a

database of pre-trained neural networks, and a facility for

retrieving applicable networks from the database.

Milestone 2: Adapted learning algorithm, facilitating neural growth (11th July)

Having  established  an  efficient  database  of  broadly  applicable  pre-trained  networks,  the  SFG

backpropagation algorithm will need to be adapted to facilitate the addition of new neurons during the fine-

tuning  process.  This  is  to  allow a  database  of  neural  networks  of  minimal  size,  pre-trained  on  simple

features, that can each be fine-tuned on demand to model more specific or complex image tiles. 

Task Deliverable

2.1  Adapt  the  backpropagation  algorithm  so  that,  as  fine-

tuning  progress  significantly  slows,  new  neurons  can  be

added to the network to extend modeling capabilities.  (11th

July)

A learning algorithm that can fine-tune and

grow miniature pre-trained neural networks,

to model more complex image features.

Milestone 3: Adapted implementation for concurrency (25th July)

Now that SFG conversion software has been adapted to provide a head start on the conversion process (in

addition to reducing neuron redundancy), the implementation needs to be adapted to run concurrently on

multiple cores, and refactored for efficiency, to increase run-time speed.

Task Deliverable

3.1 Adapt SFG conversion implementation to make use of multi-core

processors by allocating sections of a bitmap to separate threads, and

refactor code for efficiency (18th July)

A multi-threaded SFG conversion

implementation  that  counts  the

number  of  available  cores,  and

divides a bitmap into sections that

can  be  efficiently  and  robustly
3.2 Experiment  with  volatility  to  determine  a  suitable  means  of

minimising  edge-effects  (which  might  occur  at  the  fringes  of  image
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sections due to thread memory inconsistency) while maximising run-

time speed. (25th July)

handled by separate threads.

Milestone 4:  Addition of aesthetic-enhancing image filters (28th July)

Having taken measures to improve the efficiency of SFG conversion, a set of image filters can be applied as

finishing touches to potentially enhance the perceived aesthetic quality of output images.

Task Deliverable

4.1 Experiment  with  known image  filters,  such  as

unsharp and noise, to determine their effect on scaled

SFG aesthetics. (28th July)

An  updated  SFG  conversion  implementation  with

optional  image  filters  that  can  be  applied  as  a

finishing touch when rendering SFGs

Milestone 5: Final evaluation (1st August)

Task Deliverable

5.1  Gather  feedback  from  randomly  sampled  members  of  the  public,

assigning  a  rating  (in  terms  of  clarity  and  aesthetic  quality)  to  scaled

photographic images. (29th July)

Data  that  gauges  the

success  of  this  project  in

relation  to  its  aims,

comparing  the  updated

implementation  with  the

previous  version  and  with

industry standards.

5.2 Gather data comparing the accuracy, speed and file storage efficiency of

the updated and previous SFG conversion implementations, and to leading

commercial image scaling software. (1st August)

Milestone 6: Written report (22nd August)

Task Deliverable

6.1  Write  up  and  finish  the  report  and

accompanying poster. (22nd August)

An MSc Computer Science (Conversion) project report

A poster, summarising main findings and deliverables

Gantt Chart May June July August Sept

Milestones Task Time 23rd 30th 6th 13th 20th 27th 4th 11th 18th 25th 1st 8th 15th 22nd 29th 5th 12th

Milestone 1 6w 1  st 
  poster

deadline

12  th     thesis

deadline

1.1 2w

1.2 4w

Milestone 2 3w

2.1 3w

Milestone 3 2w

3.1 1w

3.2 1w

Milestone 4 3d

4.1 3d

Milestone 5 4d

5.1 2d

5.2 2d

Milestone 6 3w

6.1 3w
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Risk Analysis & Contingency Plans

Unforeseen hurdles run the risk of setting the project  back,  leading to an incomplete implementation or

evaluation by the time of the deadline. This section will describe possible hurdles, ordered by severity and

likelihood, along with planned counter-measures. The following page also provides a risk register graph to

illustrate likelihood and severity.

A. Acquiring a reliable participant sample

A sample of  members  of  the public  (who will  be asked to  rank scaled images in  terms of  clarity  and

attractiveness) will be essential to the aesthetic evaluation for this project. Ethical approval has already been

granted for this investigation. However it may be a challenge to acquire a significant enough sample of

participants to provide reliable results. A three week buffer has been built into the work-plan to help account

for any additional  time spent  gathering enough participant feedback to provide a clear aesthetic ranking

between images.

Severity – high Likelihood – medium

B. Demand Characteristics

The  possibility  of  demand  characteristics  during  aesthetic  evaluation  cannot  be  ruled  out.  Implicit

communication between the experimenter and participants could sway preference decisions that are made. To

reduce the possibility of this taking place, the experimenter will inform participants that they should not ask

any further  questions  between the  point  that  images are  displayed to them and they cast  their  ranking

decisions.

Severity – high Likelihood – medium

C. Data loss and hardware damage

Data loss due to theft or hardware failure is an ever present risk that needs to be actively mitigated against.

An external storage device will be utilised in conjunction with an online data storage service, ensuring that

both a local and cloud-based copy of work is regularly updated.

Severity – high Likelihood – low

D. Technical implementation difficulties

Unforeseen  aspects  of  the  implementation could  present  difficulties  which exceed my current  technical

knowledge regarding neural network regression. As a starting point I have an in-depth understanding of each

aspect of the current SFG conversion implementation. Challenges encountered in the scope of this project are

therefore less likely to fall outside of my capabilities. This is taking into account the fact that textbooks and

online resources are widely available and contain a wealth of knowledge on the subject of machine learning.

As a precautionary measure, I have been in communication with specialist staff in the areas of computer

graphics and machine learning (via email and/or meetings) to discuss project details and setting up future

meetings, (in addition to meetings with my supervisor, Dr. Chris Preist).

Severity – medium Likelihood – low

E. Establishing Speed Benchmarks

Establishing speed benchmarks against which to compare the updated SFG implementation with the previous

implementation should be relatively easy, with complete access to the source code. However this will be

more  difficult  or  may  not  be  possible  for  industry  standard,  proprietary  algorithms.  In  an  attempt  to

overcome this, command line versions of software will be sought that allow for algorithm completion to be

automatically  detected  and  timed.  In  any  case,  file  size  comparisons  will  certainly  be  possible,  and

significant speed improvements on the previous SFG implementation will still be detectable.

Severity – low Likelihood – high
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F. Unforeseen investigation outcomes

During the development process results that are not easy to anticipate could direct the project in slightly

unanticipated directions, potentially to overcome unforeseen problems. This kind of uncertainty arises from

the investigatory nature of this project (40% type II), and is not regarded as a significant problem. 

The buffer that has been built into the work-plan will help absorb any additional time that might be spent

implementing additional software features.

Severity – low Likelihood – medium

       Risk Register Graph
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Appendices

9.0

9.1 Atromatix Communication – Appendix 1

Personal  email  communication  with  the  startup  company  Artomatix,  as  a  query  regarding  the

suitability of multi-scale texture synthesis for photographic image enlargement.

Multi-scale texture synthesis is a tool offered commercially by the company (founded in 2014 by Dr. Eric

Risser,  who  co-authored  the  2010  research  paper  Multiscale  Texture  Synthesis).[75] There  technology

produces  impressive  results  when  synthesising  infinite  sub-pixel  textures,  but  it  is  currently  limited  to

texture-based images that exhibit a very high degree of structural repetition.

-----------------------------------------------------------------------------------------------------------------------------------

Alex Lorimer

3:26 am, March 24th 2016

I'm interested in what the texture synthesis tool allows me to do. If it were to be applied to an image such as

a  human  face,  what  would  the  zoomed  in  version  end  up  looking  like?  Can  it  be  applied  to  infinite

photograph enlargement?

-----------------------------------------------------------------------------------------------------------------------------------

Tom (Artomatix)

9:26am, March 24th 2016

Our  CTO has done research  in  that  area  (infinite  photograph enlargement),  but  it  isn't  available  at  the

moment as a product. I managed to root out an old video of infinite zoom on Van Gogh's Starry Night from

an old paper of his here: http://www.cs.columbia.edu/cg/mts/starry.wmv
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 9.2 PhotoFunction Code Organisation Overview – Appendix 2

This section can be used in conjunction with the online repository discussed in the introduction of this

document. The Login details and URL for the repository are provided below. Login is necessary before

visiting the URL.

Temporary Username:

….........................

Temporary Password:

….......................................

Repository URL

…...............................................................................................

The classes that compose the current PhotoFunction implementation are listed and described in terms

of  overall  functionality  below.  Please  note  that  PhotoFunction  was  developed  as  part  of  an

experimental, learning-based process. The arrangement and organisation of classes is not ideal, and is

intended to be altered and improved during the summer project. 

ThePackage/...

GUI.java
The GUI class contains the main method, along with code that lays out the program window and its content. 

GUI also contains the event listeners that respond to the user's input in terms of clicks and field entries. GUI 

delegates to Iterate.java, Target.java, LoadNN.java, to perform more specialised tasks.

Iterate.java
The iterate class is called directly from GUI, handling the bitmap-SFG conversion process in the background

so that the user interface is still responsive. Iterate divides the Target.png image into tiles (which are actually

stored in the Target class) and organises the conversion process in terms of learning stages, selecting data

points,  and  querying neighbouring networks to  share  information  during  the  conversion  process.  Iterate

delegates further to NN.java, Target.java, Test.java, EvaluateFitness.java, and BoxBlurFilter.java to perform

more specialised tasks.

NN.java
NN.java is the neural network class, composed of NeuronLayer objects, which themselves are composed of

Neuron objects.  The process of constructing a neural network is handled in the NN constructor method,

which iteratively delegates down to the constructor of NeuronLayer.java and subsequently to the constructor

of Neuron.java. NN also features a host of different activation functions that have been experimented with

(while only sine and atan, and their derivative functions, are used). It also handles the process of forward and

backpropagation, which are methods called by the Iterate class.

Neuron.java
Acts as a container for neuron related information such as a record of input, output, and error values; referred

to by NN.java. These values are necessary to perform error backpropagation.

NeuronLayer.java
A simple class that acts as a container that organises neurons into an array that represents a single layer in the

neural network, referred to by NN.java.
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Target.java
The constructor of the Target class is called by GUI.java, prompting Target to load the Target.png image

from a folder called Convert (this is the bitmap image that is to be converted to an SFG). Target also contains

an array of BufferedImage objects that are empty until Iterate.java assigns an image tile to each one. Iterate

then delegates to Target.java during the conversion process by querying for the pixel values at specific co-

ordinates.

Test.java
The Test class handles the process of saving SFG files (which are essentially serialised array objects which

contain neural network information). Test also loads SFG files, deserialising and returning them as arrays.

Test.java is called by Iterate periodically and at points of disruption (such as when GUI.iteratePause = =

true), in order to save progress. It is also called by LoadNN.java.

LoadNN.java
LoadNN.java is a class that handles the process of rendering an SFG, essentially converting it back to bitmap

format at a specific scale. This is called by the GUI class in response to user input (specifying the render

dimensions). LoadNN.java delegates to Test.java to perform the action of loading the appropriate SFG file

(called SFG.sfg) in the folder called Render.

BoxBlurFilter.java
BoxBlurFilter is a class that blurs a BufferedImage by a specified amount. This is called in the Iterate class.

(A slightly blurred target image can be useful in the first phase of SFG conversion, resulting in increased

SFG sharpness after the second phase of conversion, where pixels begin to be treated as domains as opposed

to absolute data points).

EvaluateFitness.java
Finally, the EvaluateFitness class is called by Iterate.java periodically to determine how accurately rendered

SFGs match the target image.  This is actually also determined in the Iterate class (as the difference between

actual output and target values, driving the training process). However EvaluateFitness.java performs this

actions across an entire image in one go (calculating error based on the SFG and Target.png image as a whole

rather than on randomly selected, individual data points). This provides a more accurate measure of whether

or not a conversion process can be deemed complete.
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